231 research outputs found

    Dynamical surface structures in multi-particle-correlated surface growths

    Full text link
    We investigate the scaling properties of the interface fluctuation width for the QQ-mer and QQ-particle-correlated deposition-evaporation models. These models are constrained with a global conservation law that the particle number at each height is conserved modulo QQ. In equilibrium, the stationary roughness is anomalous but universal with roughness exponent α=1/3\alpha=1/3, while the early time evolution shows nonuniversal behavior with growth exponent β\beta varying with models and QQ. Nonequilibrium surfaces display diverse growing/stationary behavior. The QQ-mer model shows a faceted structure, while the QQ-particle-correlated model a macroscopically grooved structure.Comment: 16 pages, 10 figures, revte

    Theoretical approach and impact of correlations on the critical packet generation rate in traffic dynamics on complex networks

    Full text link
    Using the formalism of the biased random walk in random uncorrelated networks with arbitrary degree distributions, we develop theoretical approach to the critical packet generation rate in traffic based on routing strategy with local information. We explain microscopic origins of the transition from the flow to the jammed phase and discuss how the node neighbourhood topology affects the transport capacity in uncorrelated and correlated networks.Comment: 6 pages, 5 figure

    Search for Kosterlitz-Thouless transition in a triangular Ising antiferromagnet with further-neighbour ferromagnetic interactions

    Full text link
    We investigate an antiferromagnetic triangular Ising model with anisotropic ferromagnetic interactions between next-nearest neighbours, originally proposed by Kitatani and Oguchi (J. Phys. Soc. Japan {\bf 57}, 1344 (1988)). The phase diagram as a function of temperature and the ratio between first- and second- neighbour interaction strengths is thoroughly examined. We search for a Kosterlitz-Thouless transition to a state with algebraic decay of correlations, calculating the correlation lengths on strips of width up to 15 sites by transfer-matrix methods. Phenomenological renormalization, conformal invariance arguments, the Roomany-Wyld approximation and a direct analysis of the scaled mass gaps are used. Our results provide limited evidence that a Kosterlitz-Thouless phase is present. Alternative scenarios are discussed.Comment: 10 pages, RevTeX 3; 11 Postscript figures (uuencoded); to appear in Phys. Rev. E (1995

    Scaling of mean first-passage time as efficiency measure of nodes sending information on scale-free Koch networks

    Full text link
    A lot of previous work showed that the sectional mean first-passage time (SMFPT), i.e., the average of mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) averaged over all starting points in scale-free small-world networks exhibits a sublinear or linear dependence on network order NN (number of nodes), which indicates that hub nodes are very efficient in receiving information if one looks upon the random walker as an information messenger. Thus far, the efficiency of a hub node sending information on scale-free small-world networks has not been addressed yet. In this paper, we study random walks on the class of Koch networks with scale-free behavior and small-world effect. We derive some basic properties for random walks on the Koch network family, based on which we calculate analytically the partial mean first-passage time (PMFPT) defined as the average of MFPTs from a hub node to all other nodes, excluding the hub itself. The obtained closed-form expression displays that in large networks the PMFPT grows with network order as NlnNN \ln N, which is larger than the linear scaling of SMFPT to the hub from other nodes. On the other hand, we also address the case with the information sender distributed uniformly among the Koch networks, and derive analytically the entire mean first-passage time (EMFPT), namely, the average of MFPTs between all couples of nodes, the leading scaling of which is identical to that of PMFPT. From the obtained results, we present that although hub nodes are more efficient for receiving information than other nodes, they display a qualitatively similar speed for sending information as non-hub nodes. Moreover, we show that the location of information sender has little effect on the transmission efficiency. The present findings are helpful for better understanding random walks performed on scale-free small-world networks.Comment: Definitive version published in European Physical Journal

    Constrained spin dynamics description of random walks on hierarchical scale-free networks

    Full text link
    We study a random walk problem on the hierarchical network which is a scale-free network grown deterministically. The random walk problem is mapped onto a dynamical Ising spin chain system in one dimension with a nonlocal spin update rule, which allows an analytic approach. We show analytically that the characteristic relaxation time scale grows algebraically with the total number of nodes NN as TNzT \sim N^z. From a scaling argument, we also show the power-law decay of the autocorrelation function C_{\bfsigma}(t)\sim t^{-\alpha}, which is the probability to find the Ising spins in the initial state {\bfsigma} after tt time steps, with the state-dependent non-universal exponent α\alpha. It turns out that the power-law scaling behavior has its origin in an quasi-ultrametric structure of the configuration space.Comment: 9 pages, 6 figure

    The triangular Ising antiferromagnet in a staggered field

    Get PDF
    We study the equilibrium properties of the nearest-neighbor Ising antiferromagnet on a triangular lattice in the presence of a staggered field conjugate to one of the degenerate ground states. Using a mapping of the ground states of the model without the staggered field to dimer coverings on the dual lattice, we classify the ground states into sectors specified by the number of ``strings''. We show that the effect of the staggered field is to generate long-range interactions between strings. In the limiting case of the antiferromagnetic coupling constant J becoming infinitely large, we prove the existence of a phase transition in this system and obtain a finite lower bound for the transition temperature. For finite J, we study the equilibrium properties of the system using Monte Carlo simulations with three different dynamics. We find that in all the three cases, equilibration times for low field values increase rapidly with system size at low temperatures. Due to this difficulty in equilibrating sufficiently large systems at low temperatures, our finite-size scaling analysis of the numerical results does not permit a definite conclusion about the existence of a phase transition for finite values of J. A surprising feature in the system is the fact that unlike usual glassy systems, a zero-temperature quench almost always leads to the ground state, while a slow cooling does not.Comment: 12 pages, 18 figures: To appear in Phys. Rev.

    An Interface View of Directed Sandpile Dynamics

    Full text link
    We present a directed unloading sand box type avalanche model, driven by slowly lowering the retaining wall at the bottom of the slope. The avalanche propagation in the two dimensional surface is related to the space-time configurations of one dimensional Kardar-Parisi-Zhang (KPZ) type interface growth dynamics. We express the scaling exponents for the avalanche cluster distributions into that framework. The numerical results agree closely with KPZ scaling, but not perfectly.Comment: 4 pages including 5 figure

    Recursive graphs with small-world scale-free properties

    Full text link
    We discuss a category of graphs, recursive clique trees, which have small-world and scale-free properties and allow a fine tuning of the clustering and the power-law exponent of their discrete degree distribution. We determine relevant characteristics of those graphs: the diameter, degree distribution, and clustering parameter. The graphs have also an interesting recursive property, and generalize recent constructions with fixed degree distributions.Comment: 4 pages, 2 figure

    Effective dimensions and percolation in hierarchically structured scale-free networks

    Get PDF
    We introduce appropriate definitions of dimensions in order to characterize the fractal properties of complex networks. We compute these dimensions in a hierarchically structured network of particular interest. In spite of the nontrivial character of this network that displays scale-free connectivity among other features, it turns out to be approximately one-dimensional. The dimensional characterization is in agreement with the results on statistics of site percolation and other dynamical processes implemented on such a network.Comment: 5 pages, 5 figure

    Exact scaling properties of a hierarchical network model

    Full text link
    We report on exact results for the degree KK, the diameter DD, the clustering coefficient CC, and the betweenness centrality BB of a hierarchical network model with a replication factor MM. Such quantities are calculated exactly with the help of recursion relations. Using the results, we show that (i) the degree distribution follows a power law PKKγP_K \sim K^{-\gamma} with γ=1+lnM/ln(M1)\gamma = 1+\ln M /\ln (M-1), (ii) the diameter grows logarithmically as DlnND \sim \ln N with the number of nodes NN, (iii) the clustering coefficient of each node is inversely proportional to its degree, C1/KC \propto 1/K, and the average clustering coefficient is nonzero in the infinite NN limit, and (iv) the betweenness centrality distribution follows a power law PBB2P_B \sim B^{-2}. We discuss a classification scheme of scale-free networks into the universality class with the clustering property and the betweenness centrality distribution.Comment: 4 page
    corecore